Comparing Performance of Formal Concept Analysis and Closed Frequent Itemset Mining Algorithms on Real Data
نویسندگان
چکیده
In this paper, an experimental comparison of publicly available algorithms for computing intents of all formal concepts and mining frequent closed itemsets is provided. Experiments are performed on real data sets from UCI Machine Learning Repository and FIMI Repository. Results of experiments are discussed at the end of the paper.
منابع مشابه
A New Algorithm for High Average-utility Itemset Mining
High utility itemset mining (HUIM) is a new emerging field in data mining which has gained growing interest due to its various applications. The goal of this problem is to discover all itemsets whose utility exceeds minimum threshold. The basic HUIM problem does not consider length of itemsets in its utility measurement and utility values tend to become higher for itemsets containing more items...
متن کاملFast Algorithms for Mining Generalized Frequent Patterns of Generalized Association Rules
Mining generalized frequent patterns of generalized association rules is an important process in knowledge discovery system. In this paper, we propose a new approach for efficiently mining all frequent patterns using a novel set enumeration algorithm with two types of constraints on two generalized itemset relationships, called subset-superset and ancestor-descendant constraints. We also show a...
متن کاملEfficient Mining of Association Rulesusing Closed
| Discovering association rules is one of the most important task in data mining. Many eecient algorithms have been proposed in the literature. The most noticeable are Apriori, Mannila's algorithm, Partition, Sampling and DIC, that are all based on the Apriori mining method: pruning the subset lattice (itemset lattice). In this paper we propose an eecient algorithm, called Close, based on a new...
متن کاملClosed and Maximal Tree Mining Using Natural Representations
Closure-based mining on purely relational data, that is, itemset mining, is, by now, well-established, and there are interesting algorithmic developments. Sharing some of the attractive features of frequency-based summarization of subsets, it offers an alternative view with both downsides and advantages; among the latter, there are the facts that, first, by imposing closure, the number of frequ...
متن کاملLCM ver. 2: Efficient Mining Algorithms for Frequent/Closed/Maximal Itemsets
For a transaction database, a frequent itemset is an itemset included in at least a specified number of transactions. A frequent itemset P is maximal if P is included in no other frequent itemset, and closed if P is included in no other itemset included in the exactly same transactions as P . The problems of finding these frequent itemsets are fundamental in data mining, and from the applicatio...
متن کامل